Idaho National Laboratory

Wireless & Conductive Charging Testing to Support Code & Standards

PI: Barney Carlson
Idaho National Laboratory
Energy Storage & Advanced Vehicles

June 6, 2017

DOE Vehicle Technologies Program Annual Merit Review INL/MIS-17-41397

Project ID GI096

This presentation does not contain any proprietary, or otherwise restricted information

Overview

Timeline FY15

- Evaluate one WPT from FOA-667
- Energy Star EVSE test method development

FY16

- Support SAE J2954 (WPT)
 - test procedure development
 - Begin interoperable WPT1/2 testing
- Evaluate second WPT from FOA-667
- Validate Energy Star EVSE test method

FY17

- Complete interoperable WPT1/2 testing
- WPT test results enabled SAE J2954 results-based decisions
- WPT high power, high coil gap testing

Budget (funding received)

• FY15: \$630k

• FY16: \$250k

FY17: \$150k

Barriers

- Need for charging infrastructure codes and standards for successful market introduction
- Interoperability of WPT systems across power and gap classes
- Charging systems power quality and grid impacts
- Lack of published results / data from advanced charging systems

Partners

- OEMs and Industry partners
 - Team members
 - SAE J2954
 - SAE J2894
 - Hyundai, Mojo Mobility
- EPA Energy Star
- Intertek CECET

Objective

- INL provides independent testing and evaluation results for:
 - Wireless power transfer (WPT) systems
 - Conductive charging systems
- Support the development and harmonization of codes and standards for wireless and conductive charging
- Provide DOE with test results and feedback for technology development investments and Funding Opportunity Announcements

Relevance

- Evaluation of Charging Systems and Infrastructure is <u>relevant</u>:
 - Characterize impact and interaction with the grid
 - Standardization reduces risks and costs of new technologies
 - Increased EV adoption through consumer awareness

Milestones

- Support SAE J2954 (wireless charging) development
 - Completed: Interoperability testing and evaluation of eight (8) wireless charging system from three OEM / manufacturer teams
 - Range of: coil topology, power class, coil misalignment, coil gap
 - Enabled SAE J2954 results-based decision for standards development
 - Recipient of the 2016 USCAR Research Partner Award
 - In conjunction with the Grid Interaction Tech Team (GITT)
- Performance and Safety Testing of WPT systems from FOA-667
 - Completed: Hyundai / Mojo Mobility wireless charger (Dec. 2016)
 - Range of: power transfer, coil misalignment, coil gap
- EPA <u>published</u> the ENERGY STAR EVSE final specification
 - INL drafted and validated the test methods specifications
- Supported SAE J2894 with detailed test results of PEV charging systems
 - Response to dynamic grid events
 - Steady state characterization of charging systems (efficiency, power quality)

Approach: INL's Electric Vehicle Infrastructure Laboratory

- Support codes and standards development and harmonization through testing and system characterization
 - Wireless Power Transfer (WPT):
 - SAE J2954
 - Conductive Charging Systems:
 - EnergyStar for EVSE
 - SAE J2894 (power quality)
 - Grid Modernization (GMLC)
 - Cyber security vulnerability assessment (L2 and DCFC)
- Measure performance metrics
 - Power transfer capability, Efficiency, EM-field emissions, Power quality
 - Steady state characterization and response to dynamic grid events
- Wide range of input power
 - 120 VAC to 480 VAC 3₀
 - 400 kVA capacity of installed receptacles

https://avt.inl.gov/panos/EVLTour/?startscene=pano5141

Accomplishments: WPT Interoperability Testing supports SAE J2954

- INL completed interoperability testing of 8 WPT systems (3.5kW & 7.0kW)
 - Daimler / Jaguar Land Rover / Qualcomm (Z1, Z2, Z3)
 - Nissan / WiTricity (Z1, Z2, Z3)
 - Toyota (Z1, Z2)

- INL Bench testing evaluated interoperability performance of various:
 - coil topology, gap class (Z1, Z2, Z3), and power class (WPT1, WPT2)
 - System Efficiency
 - Power transfer capability
 - Power factor
 - Magnetic and Electric field
 - Test results supported SAE J2954 results-based decisions for developing the draft documents

Collaboration Vital to J2954 WPT Testing Success

- State of the art WPT systems provided for testing and evaluation
- Researchers from collaborative teams visited INL during testing
 - Real-time calibration and tuning of interoperable WPT operation
 - Collaborate on development of interoperable control strategies

Accomplishments: WPT Interoperability Testing supports SAE J2954

Across all coil misalignments, coil gaps, power levels, and output voltages

- Nearly all interoperable WPT combination achieved <u>full power transfer</u>
- Matched WPT:
 - System efficiency ranged from 80.3% to 93.2%
 - H-field ranged from 6.8 A/m to 55 A/m
 - E-field ranged from 45 V/m to 239 V/m
- Interoperable WPT:
 - System efficiency ranged from 79.9% to 92.4%
 - H-field ranged from 6.7 A/m to 168 A/m
 - E-field ranged from 60 V/m to 390 V/m
- All systems achieved (matched and interoperable):
 - high power factor (≥0.95)
 - very low input current THD

Note: ICNIRP 2010 public exposure limit: H-field: 21 A / m E-field: 83 V / m

Accomplishments: EMC Testing Collaboration with TDK

- TDK has world class EMC / EMF test facilities in Cedar Park, TX
 - Anechoic Chambers, Open Area Test Sites (PEC and earth ground)
- INL supported EMC / EMF testing at TDK in Cedar Park, TX
 - Matched and interoperable WPT testing was conducted
 - Qualcomm, Nissan / WiTricity, Toyota WPT systems
 - Results are critical for SAE J2954 development and harmonization

- INL completed testing and evaluation
 - Efficiency
 - Power quality
 - Electromagnetic field
 - Across a wide range of:
 - X & Y coil misalignment
 - Z coil to coil gap
 - Output voltage

INL Photo

WPT Performance Results at Nominal Conditions:

(coils aligned (0,0), 7.0 kW DC output power)

Ground Clearance (coil gap)	200 mm
Total System Efficiency (AC to DC)	88.4%
DC to DC Efficiency	91.7%
Front End Pwr. Elec. Efficiency	96.5%
Magnetic field at front of vehicle*	18.3 A/m
Electric field at front of vehicle*	278 V/m
Input Current THD	9.5%
Input Power Factor	0.995
Operating Frequency	88.3 kHz

*Note:

Center of EM-field probe:

X= 200mm forward of front bumper

Y= 0 mm (along vehicle axis)

Z= vertically centered in 200mm ground clearance (100mm above ground surface)

EM-field at 200mm forward of vehicle front bumper (200mm gap, 7.0 kW)

- EM-field at 200mm forward of vehicle front bumper (200mm gap, 7.0 kW)
- Maximum EM-field measured:
 - Magnetic field: 21.7 A/m
 - Electric field: 425 V/m

- Evaluated charge system response to:
 - Control Pilot variation
 - Voltage deviation and distortion
 - Frequency deviation (55 to 65 Hz)
 - Charge Interruption response
- Charge systems evaluated: vehicles leveraged from AVTE fleet (Intertek) see presentation GI029 by Jeremy Diez
 - Level 2
 - 2012 Chevy Volt
 - 2013 Ford Fusion
 - 2014 BMW i3
 - 2015 Mercedes B-Class
 - 2016 Chevy Volt
 - Level 2 and DCFC evaluation
 - 2012 Nissan Leaf
 - 2015 Nissan Leaf
 - 2015 Kia Soul

INL Photos and Photos courtesy: Intertek CECET

- Charge Characteristic to <u>varying input voltage</u>
- Three PEV's have varying
 - PEV-A
 - Level 1 & 2: nearly constant current
 - PEV-B
 - Level 1: nearly constant power
 - Level 2: constant current below 208V but power limited above 208V
 - PEV-C
 - Level 1: nearly constant power
 - Level 2: varying power
 - No operation between input voltage 160V RMS 190V RMS

Response to a <u>voltage sag</u> from 240V to 100V RMS for three cycles

Ideal Response

- Reduced current with reduced voltage
- After sag, operation continues normally

Actual Response

- During voltage sag (three cycles)
 - Varying levels of increased current
- After voltage sag
 - Varying degree of recovery to normal charge operation

Accomplishments: ENERGY STAR Conductive EVSE test method

Finalized Test Method document created for EVSE testing

- Definitions
- Test equipment requirements
- Test procedures
 - Standby power consumption
 - Power consumption during charging

EVSE tested to validate procedures and provide results to

- Support development of performance metric limits
- Benchmark performance of current technology

U.S. EPA published Final Draft Specification for the ENERGYSTAR EVSE (v1.0)

Response to Previous Year Reviewer Comments

Reviewer: "... little over-emphasis on details of the wireless charging work at the expense of some data results from the ENERGY STAR® evaluations of EVSEs. The reviewer would like to see a sampling of what kind of efficiency variations were observed in this testing..."

<u>INL</u>: As presented above, INL's support for ENERGY STAR focused on test procedure development. A few sample EVSE were evaluated using the above test procedures to verify and validate the specific wording in the procedures are clear and precise.

Reviewer: "The proposed future work is good and should be expanded to include additional wireless charging systems including HD if possible."

<u>INL</u>: Work on SAE J2954/2 has commenced this year and is focused on medium and heavy duty application of wireless charging ranging from high power, heavy duty EV applications to anti-idling applications via wireless charging to power ancillary loads.

Any proposed future work is subject to change based on funding levels

Collaboration

SAE J2954

- INL conducted interoperable WPT testing in collaboration with:
 - Toyota
 - Nissan / WiTricity
 - Daimler / Jaguar Land Rover / Qualcomm
 - TDK RF Solutions
 - Delphi Packard Electric

SAE J2894

- INL's characterization of conductive charging vehicle systems
 - Intertek CECET (Phoenix)

ENERGY STAR

 INL supported the EVSE test method document

Hyundai / Mojo Mobility

TOYOTA

DELPHI

Future Work / Remaining Challenges / Barriers

Any proposed future work is subject to change based on funding levels

- Support SAE J2954 results-based decision process
 - Testing and evaluation of Vehicle integrated WPT systems
 - Comparison with Bench testing results (validate bench test methodology)
 - Interoperability testing of higher power / higher gap WPT systems
 - Support SAE J2954/2 (Med. / Heavy Duty Wireless Charging)
- Continue support of SAE J2894 development (Power Quality)
 - Test results from a wide range of charging systems
 - Power quality and grid interaction dynamic response
- Cyber Security assessment of charging infrastructure
 - Impact to grid and local distribution
 - Wireless and High Power Charging Systems
- Support development and standardization of dynamic WPT test methods & procedures

Summary:

Completed:

- Interoperability testing and evaluation of eight WPT systems to support and validate SAE J2954 development
 - Interoperability shown amongst all evaluated coil topologies and power classes
- Evaluation of the Hyundai / Mojo Mobility WPT (FOA-667)
 - Performance and safety of WPT on Kia Soul EV
- U.S. EPA published Final Draft Specification: ENERGYSTAR EVSE v1.0 with technical input and specifications from INL
- Characterization of DC Fast and AC vehicle charging systems
 - Efficiency, Power Quality
 - Response to dynamic grid event

Technical Back-up Slides

Accomplishments: WPT Interoperability Testing supports SAE J2954

- Test variables include:
 - Ground Clearance (coil gap)
 - Z1 (100, 125, 150 mm)
 - Z2 (140, 175, 210 mm)
 - Z3 (170, 210, 250 mm)
 - Coil misalignment
 - Aligned: (0,0) mm
 - Misaligned: up to (<u>+</u>75, <u>+</u>100) mm
 - Power Transfer
 - 100% and 50%
 - Output Battery Voltage
 - 280, 350, 420 VDC

INL Photo

- Testing and Evaluation of: ABB Terra 53CJ
- Performance metrics
 - Efficiency
 - Power Factor
 - Total Harmonics Distortion
- Evaluated DCFC characteristics for three EVs
 - 2015 Nissan LEAF
 - 2012 Nissan LEAF
 - 2015 Kia Soul
- Results differences mainly due to battery voltage differences

INL Photo

Response to voltage sag (240V to 100V) at various Control Pilot duty cycle

- Common Relevant Questions:
 - Since the PEV charging current control is limited by the control pilot signal, does the control pilot signal restrain the current magnitude during a voltage sag?
 - No

cp = 30 Amps

- Does the control pilot signal suppress the undesirable characteristics of the vehicles' response to a voltage sag?
 - Yes to some extent.
 - PEV-A and PEV-B
 - Amount of time with increased current is reduced
 - PEV-A

Response to various voltage sag depth for three cycle duration

- The response of a vehicle tends to become worse as the voltage sag depth increases
 - For all three PEVs
 - increase in current is larger as voltage sag depth increases.
 - For PEV-A and PEV-C
 - vehicle charging is interrupted for only the larger voltage sags.

100 V

- Response to various voltage sag duration from 240V to 100V RMS
- The response of a vehicle tends to become worse as the voltage sag duration increases
 - PEV-A and PEV-B
 - current is high for a longer time as voltage sag duration increases
 - PEV-A
 - charging is interrupted for a larger duration when the voltage sag duration is larger
 - PEV-C

- response is identical for a sag to 100 V
- In all cases (sag durations) the vehicle charging is interrupted for about 10 seconds

Time (seconds)

